Complete synchronization of chaotic atmospheric models by connecting only a subset of state space

نویسندگان

  • P. H. Hiemstra
  • N. Fujiwara
  • F. M. Selten
چکیده

Connected chaotic systems can, under some circumstances, synchronize their states with an exchange of matter and energy between the systems. This is the case for toy models like the Lorenz 63, and more complex models. In this study we perform synchronization experiments with two connected quasi-geostrophic (QG) models of the atmosphere with 1449 degrees of freedom. The purpose is to determine whether connecting only a subset of the model state space can still lead to complete synchronization (CS). In addition, we evaluated whether empirical orthogonal functions (EOF) form efficient basis functions for synchronization in order to limit the number of connections. In this paper, we show that only the intermediate spectral wavenumbers (5–12) need to be connected in order to achieve CS. In addition, the minimum connection timescale needed for CS is 7.3 days. Both the connection subset and the connection timescale, or strength, are consistent with the time and spatial scales of the baroclinic instabilities in the model. This is in line with the fact that the baroclinic instabilities are the largest source of divergence between the two connected models. Using the Lorenz 63 model, we show that EOFs are nearly optimal basis functions for synchronization. The QG model results show that the minimum number of EOFs that need to be connected for CS is a factor of three smaller than when connecting the original state variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control

Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but...

متن کامل

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Global Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control

In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...

متن کامل

Dynamical behavior and synchronization of chaotic chemical reactors model

In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012